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Abstract
We consider the theoretical model of an amphiphilic macromolecule with
a complex structure of hydrophobic/hydrophilic monomer units. Each unit
consists of a hydrophobic group (H) in the backbone and a side hydrophilic
group (P). The units are able to orient in the density gradient at the surface layer
of a globule. First, we use the density functional method to obtain the surface
tension at a flat surface. We obtain that the effect of orientation decreases the
surface tension of an amphiphilic globule in comparison with the surface tension
of a homopolymer globule of the same density. Therefore, the amphiphilic
globule is more stable with respect to the transition to a coil conformation.
Then, macromolecules with strong orientational ability of amphiphilic units
are considered. The free energy of spherical, bead-like, disc-like and torus-
like globules is analysed for flexible and rigid macromolecules. For very long
macromolecules in poor solvent, it is predicted that a disc-like globule for
flexible chains should be formed. It is shown that the coil–globule transition in
amphiphilic macromolecules is in most cases accompanied by a disintegration
of the initially formed globule into several ‘bead globules’. Upon further
increase of the attraction of hydrophobic units, these beads merge with each
other with the formation of a disc-like or torus-like globule, depending on the
chain stiffness.

1. Introduction

Macromolecules of amphiphilic polymers contain both hydrophobic and hydrophilic groups
possessing different affinity to water and polar solvents. Many synthetic and biological
polymers like proteins, phospholipids, and polysaccharides are referred to as polyamphiphiles.

Studying theoretical models of amphiphilic polymers leads to a better understanding of
important protein and enzyme properties, for example, the regular transition phenomena in
proteins [1–6]. Water solubility is a characteristic feature of protein globules provided by
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polar groups surrounding a dense core. The special three-dimensional structure (unique native
conformation) of proteins [1, 2] is stabilized by the surface tension. Investigation of this
important factor can help to explain a variety of amphiphilic globule shapes realized in nature.
A large number of synthetic polymers can take spherical, rod-like, and disc shapes [7–11]. The
DNA macromolecules often have a torus-like structure [1, 2, 12]. The complex structure of
mixtures containing surfactants, as well as the shape transformations in such systems, are also
controlled by the interfacial energy [13–15].

For amphiphilic globules the surface tension depends on types of polymer units at a globule
surface. The simplest models of amphiphilic polymers involve two types of monomer units: H
(hydrophobic) and P (hydrophilic or polar). Hydrophobicity can be described as a tendency of
hydrophobic groups to reduce their surface of contact with a polar solvent: two hydrophobic
groups try to stick together in order to hide their mutual surface of contact. On the other
hand, the hydrophilic groups tend to be surrounded by solvent molecules. Therefore, the
hydrophobic–polar interactions give rise to the formation of a compact structure with mostly
hydrophobic core and polar shell [16].

The coil–globule transition for random HP copolymers was investigated for the annealed
and quenched disorder in HP sequences [17–19]. The sequences of H and P units in polymer
chains determine the interaction energy of globular macromolecules [4–6, 20, 21]. The type
of sequences which model the protein property to have a dense core and to be soluble in
water was called in [22–24] protein-like sequences. Normally, such sequences are obtained
by transforming the surface monomer units of a ‘parental’ spherical globule to a polar type and
the monomer units in the core to a hydrophobic type [22–24].

The stability of globules formed by regular, random, protein-like chains was analysed
numerically using the self-consistent field approach and computer simulations [25]. The
protein-like copolymers were predicted to be the most stable ones with respect to a coil–
globule transition. All sequences mentioned above and HP–H sequences (formed by one
long and many short H blocks) were considered theoretically for macromolecules with a
small fraction of polar units located at the globule surface [26]. It was obtained that the
HP–H copolymers have the lowest free energy. Protein-like copolymers were found to be
very stable as well. Molecular architectures of HP–H copolymer chains and their aggregates
were considered theoretically; different types of macromolecule structures were predicted to be
thermodynamically stable depending on the sequence characteristics of such copolymers [27].
For HP multi-block-copolymers, it was shown that the shape transitions are accompanied by the
formation of a surface pattern of fingers of different morphologies [28]. For amphiphilic comb-
like copolymers, the formation of spherical, necklace-like, cylindrical, and lamellar structures
was predicted [29].

A further development of the HP-copolymer model is the side-chain model introduced
recently by Vasilevskaya et al [30]. The model mimics the dualistic character of each monomer
unit containing both hydrophobic and polar groups. The backbone of the macromolecule is
considered as a flexible chain consisting of H groups; one side P group is attached to each
H group. The results of molecular dynamics simulations demonstrate that, as the solvent
becomes poorer, chain conformations smoothly change from a swollen coil to a necklace-like
conformation, then to a sausage-like conformation, and then to a cylinder.

Besides, the conformations of hydrophobic–amphiphilic copolymers were studied
in molecular dynamics simulations, for both single-chain and multichain systems [31].
Random protein-like copolymers and regular copolymers with alternating hydrophobic H and
amphiphilic HP units and with alternating blocks of these units were considered. It was
found that regular copolymers tend to form compact conformations elongated in one direction,
whereas protein-like copolymers readily adopt core–shell spherical conformations. Besides,
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Figure 1. Structure of an amphiphilic macromolecule.

no large-scale aggregation for protein-like copolymers was observed due to the stabilizing
hydrophilic envelope of their compact structures.

In the present work the side-chain model of amphiphilic macromolecules in the globular
state is considered. We use the results for the surface tension for a flat surface of homopolymer
globules obtained in the classical work [32] and extend them to the case of amphiphilic
macromolecules with the composed (dimer) units. The dimer units are able to orient at a globule
surface: H groups tend to get inside the globule because of the attraction to each other and P
groups tend to locate at the globule surface because of the attraction to solvent molecules. The
orientational contribution in the interaction energy and the orientational entropy of dimer units
should be taken into account in the free energy. The orientation entropy is taken in the same
form as in the liquid crystal theory [33].

Further, we consider amphiphilic globules with different shapes: a spherical globule,
beads, disc, cylinder, and torus-like conformations. We write the expression for the free energy
as a function of the globule density, shape, and surface area. The chain conformation is less
perturbed for a spherical form of the globule than for a narrow disc or thin cylinder (for globules
of the constant volume). At the same time the surface interaction energy of amphiphilic
globules is negative and proportional to the surface area, this fact giving rise to a non-spherical
shape. The equilibrium size and shape of amphiphilic macromolecules are determined by the
balance between the surface free energy and other contributions (volume, conformation) to
the free energy. We find the minimum of the free energy and obtain the shape diagram for
amphiphilic macromolecules depending on solvent quality, chain length, and stiffness.

2. The model

Let us consider the model of a globule formed by an amphiphilic macromolecule in polar
solvent. Every polymer unit has a hydrophobic group (H) in the backbone and a polar group
(P) attached to the H group (figure 1). Let the macromolecule consist of N monomer units; v

is the volume of a dimer monomer unit; vs is the volume of a solvent molecule. Volumes of
the hydrophilic and hydrophobic parts of a unit are supposed to be equal. The two parameters
of unit interactions control the formation of a globule: εHH is the interaction energy for the
H-group surrounded by H-groups, εPs is the interaction energy for the polar group with solvent
(εHH < 0, εPs < 0). The conformation of the backbone chain is described by a Gaussian
model [32] with the mean square distance between units a, this parameter corresponding to a
persistent length of a macromolecule. The length of the H–P bond is denoted by l.

In this section let us assume that the amphiphilic molecule with the dimer hydrophilic–
hydrophobic units forms a globule similar to a homopolymer one with nearly homogeneous
dense core and loops at the edge. The polar groups of dimer units at the surface are oriented
outwards due to the attraction of the polar groups to the solvent. We will investigate the stability
of the amphiphilic globule related to the transition to a coil conformation and find the optimum
form of such globules.
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Figure 2. Orientation of a dimer unit.

Let us consider a large homogeneous globule. Let φ be the monomer volume fraction,
then φH = φP = φ/2 are the volume fractions of hydrophobic and polar groups respectively;
φs = 1 − φ is the solvent volume fraction.

The interaction energy of a homogeneous globule consists of the energy of pair contacts
and of the term related to the entropy of solvent molecules:

E0

kBT
= N

(
εHH

2
φH + εPsφs

)
+ Ms ln φs, (1)

where Ms = N v
vs

φs
φ

is the number of solvent molecules within the globule.
In the volume approximation the free energy of a globule F0 is equal to the interaction

energy:

F0(φ)

NkBT
= ε

2
φ + v

vs

(
1 − φ

φ
ln(1 − φ) + 1

)
, (2)

where a coil state of the macromolecule is taken as a reference state; ε = εHH/2 − 2εPs is
the effective interaction energy. All interaction energy parameters are expressed in the units of
kBT .

Within a mean-field approximation, the equilibrium volume fraction φ0 corresponds to the
minimum of the free energy (2): ∂ F0/∂φ|φ=φ0 = 0. The minimum value F0 is determined by
the relations

F0

NkBT
= 3

2
εφ0 − εφ2

0 + v

vs
,

ln(1 − φ0)

φ2
0

+ 1

φ0
= ε

vs

v
. (3)

The whole free energy of a globule includes the bulk contribution (3) and the surface free
energy, which will be calculated in the next sections taking into account the possibility of dimer
unit orientation.

3. Surface free energy for spherical globules

We calculate the surface free energy for a large spherical globule, which depends on the density
profile of units in the surface layer and on the dimer unit orientation. We introduce the unit
volume fractions φ(r) depending on the radial coordinate and the function of unit orientation
distribution f (θ, r), where θ is the angle between the H–P bond vector l and the radial direction
(figure 2). The volume fraction profile φ(r) is assumed to be smooth (a|∇φ|/φ0 � 1),
and the normalization conditions for the functions φ(r) and f (θ, r) are Nv = ∫

φ(r) d3r ,∫
d�l f (θ, r) = 1.
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The whole free energy of a globule can be written in the form

F(φ, f ) = E(φ, f ) − T Sconf(φ) − T Sorient(φ, f ), (4)

where E is the interaction free energy, Sconf is the conformational entropy of the backbone
chain, and Sorient is the orientational entropy of dimer units.

Considering a coil conformation as a reference state, the interaction energy can be written
in the form
Ev

kBT
=

∫
d3r

∫ {
d�l φ(r) f (θ, r)

(
εHH

2
φH(r) + εPsφs(r + l) − εPs

)

+ v

vs
(φs(r) ln φs(r) + φ(r))

}
, (5)

where φs(r + l) = 1 − φ(r + l) ≈ 1 − φ(r) − (l∇φ). Then, expression (5) can be written as

Ev

kBT
=

∫
d3r

{
ε
φ2(r)

2
− εPsφ(r)

∫
d�l f (θ, r)(l ∇φ)

+ v

vs
[(1 − φ(r)) ln(1 − φ(r)) + φ(r)]

}
. (6)

The second term in relation (6) corresponds to the decrease of the free energy (εPs < 0) due to
the unit orientation in the region where the density gradient is not zero.

The conformational entropy at a small density gradient is given by the Lifshitz formula,

Sconf(φ)/kB = a2

6v

∫
d3r

√
φ(r)�(

√
φ(r)), (7)

and the orientational entropy is taken in the same form as in the liquid crystal theory [33]:

Sorient(φ)/kB = −1

v

∫
d3r φ(r)

∫
d�l f (θ, r) ln(4π f (θ, r)). (8)

The equilibrium volume function profile φ(r) and the equilibrium function of orientation
distribution f (θ, r) should correspond to the minimum of the free energy (4). The
minimization of the free energy with respect to the function f (θ, r) gives

f (θ, r) = 1

4π

εPs(l∇φ(r))

sinh{εPs(l∇φ(r))} exp(−εPs(l∇φ(r))). (9)

The distribution function of unit orientation f (θ, r) over the angle θ calculated from
expression (9) is represented in the figure 3 for different values of the volume fraction gradient.
The orientation of units is more pronounced in the region with the larger value of the density
gradient. The units are completely disordered ( f (θ, r) = 1/(4π)) in the core of a globule,
where φ(r) = φ0.

The free energy of a globule can be represented as a sum of the bulk free energy (3) and
the surface free energy:

F = F0 + σ Ssurf, (10)

where σ is the surface tension and Ssurf is the surface area of the globule. Further, we neglect
the surface curvature and describe a flat surface. Then, the surface tension can be written as a
unidimensional integral along the coordinate axis x in the radial direction:

σv

kBT
=

∫
dx

(
ε
φ2

2
+ v

vs
[(1 − φ) ln(1 − φ) + φ] + a2

6

φ′2

4φ

)

−
∫

dx φ

(
ε
φ0

2
+ v

vs

[
1 − φ0

φ0
ln(1 − φ0) + 1

]
+ ln

sinh(baφ′/2)

baφ′/2

)
, (11)
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Figure 3. The distribution function of unit orientation over the angle θ between the H–P bond
and the radial direction f (θ, r) for the different volume fraction gradients. The interaction energy
εPs = −4.

where b = 2lεPs/a is the orientational parameter. The orientation contribution is given by the
last term in equation (11) and it is negative. Expression (11) can be rewritten using the virial
expansion for φ � 1 and the expansion of the last term for εPslφ′ � 1 (for a smooth enough
interface):

σv

kBT
=

∫
dx

(
B

2
φ(φ − φ0) + C

6
φ(φ2 − φ2

0) + a2

24

φ′2

φ
(1 − b2φ2)

)
, (12)

where the second and the third virial coefficients B = ε + v/vs and C = v/vs, and then
φ0 = −3B/(2C). The minimization leads to the differential equation for the volume fraction:

φ′ = 2

a

√
C√

1 − b2φ2
(φ − φ0)φ. (13)

Equation (13) can be solved analytically. It is convenient to take x = 0 at the point where
φ = φ0/2, and the boundary conditions φ(+∞) = 0, φ(−∞) = φ0.

A homopolymer globule is described by zero orientational parameter: b = 0. The well
known result for a homopolymer globule (with the bulk density φ0) [32]

φ(x) = φ0

2

(
1 − tanh

xφ0
√

C

a

)
(14)

can be easily obtained from equation (13).
Taking into account the orientation term leads to a non-symmetrical profile. The exact

solution φ(x) of expression (13) for b �= 0 can be written in the implicit form

x = a

2φ0
√

C

(
W

(
φ0

2

)
− W (φ)

)
, (15)
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Figure 4. The volume fraction profiles for a homopolymer globule (solid line) and for an
amphiphilic globule (dashed lines) corresponding to the different values of the bulk volume fraction
φ0: φ0 = 0.25 (1) and φ0 = 0.5 (2). The third virial coefficient C = 2.

where

W (φ) = bφ0 arcsin(bφ) + 1

2
ln

∣∣∣∣1 − √
1 − b2φ2

1 + √
1 − b2φ2

∣∣∣∣

+
√

1 − b2φ2
0 ln

∣∣∣∣
2
√

1 − b2φ2
√

1 − b2φ2
0

φ − φ0
+ 2

1 − b2φ0φ

φ − φ0

∣∣∣∣.
The volume fraction profiles for an amphiphilic macromolecule and for a homopolymer globule
of the same density are presented in figure 4. As can be seen from the figure, the possibility
of unit orientation leads to the steeper profile in comparison with a homopolymer globule, and
the effect of orientation is more remarkable for a denser globule. Besides, the profile is non-
symmetric and the larger fraction of units of an amphiphilic molecule is located in the region
with φ > φ0/2, this fact being related to the decrease of the interaction energy from the unit
orientation, which is proportional to the concentration gradient (see equation (4)).

It should be noted that the allowable value of the orientational parameter b is limited by
the condition that the concentration profile should be smooth enough. Then, it follows from
equation (13) that the product |b|φ0 should not be close to unity: |b| < 1/φ0.

Now the surface tension can be found from expressions (12) and (13):

σ = σ0

{√
1 − b2φ2

0 + 1

bφ0
arcsin(bφ0) + 2

3b2φ2
0

[(1 − b2φ2
0)3/2 − 1]

}
. (16)

The well known result for the surface tension of a homopolymer globule corresponds to b = 0:

σ0 = kBT a
v

√
Cφ2

0
12 . In figure 5 the surface tension calculated according to expression (16) is

plotted as a function of the orientation parameter. For small value of the orientation parameter,
expression (16) can be approximated by σ = σ0(1 + bφ0/4) (|b|φ0 � 1). The surface tension
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Figure 5. The dependence of the reduced surface tension σ/σ0 on the orientation parameter b for
different values of the bulk volume fraction φ0: φ0 = 0.25 (1) and φ0 = 0.5 (2). The surface
tension for a homopolymer globule corresponds to b = 0.

decreases with increasing the absolute value of the orientational parameter due to the increase
of the benefit from the orientation of monomer units in the surface layer. The influence of the
orientation is stronger for denser globules, since their density profiles are characterized by the
larger gradients (see figure 4).

Now consider an amphiphilic globule near a coil–globule transition. The expression for the
free energy F (4) is written relative to the free energy of a coil state, therefore the coil–globule
transition temperature Ta corresponds to zero free energy F = 0. Let Thom be the transition
temperature for a homopolymer globule of the same density and size as an amphiphilic one.
Then

F0(Thom) + σ0Ssurf = F0(Ta) + σ Ssurf = 0. (17)

For the transition temperatures Thom and Ta close to the so-called θ -temperature, we find
the difference between the transition temperatures �T = Ta − Thom from equation (17):
�T ≈ (σ0 − σ)Ssurf/(∂ F0/∂T ). Since the θ -temperature corresponds to the zero second
virial coefficient B = 0, the transition temperature is equal to the θ -temperature in the limit
N → ∞.

Assuming that B ≈ (T − θ)/θ and using expressions (3) and (16), we obtain that the
transition temperature increases at �T ≈ |b|a3/(C1/2vN) (|b|φ0 � 1). Therefore, we can
conclude that an amphiphilic globule is more stable related to a coil–globule transition, and
that the shift of the transition temperature is proportional to the orientational parameter.

4. Shape diagram of amphiphilic globules

The surface free energy of the amphiphilic globule with oriented units is less than that of a
homopolymer globule of the same density. In the previous section we considered the spherical
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Figure 6. The possible globule shapes for an amphiphilic molecule: beads (1), cylindrical (2),
disc-shaped (3), and torus-shaped (4) globules.

globule with smooth concentration profile at the interface and with positive surface tension. We
obtained that for the very high value of the orientation parameter the thickness of the surface
layer is of the order of the monomer unit size and all dimer units at the surface are oriented
outward with respect to the globule. If the attraction of the polar groups to the solvent is very
strong, then the surface free energy should become negative. The spherical form is not the most
favourable for such globules, and the globule shape should be determined by the competition
between the bulk free energy, the conformational free energy, and the surface interactions. In
this section we will consider different possible shapes of the globule: the spherical globule and
beads and the cylindrical, disc-shaped, and toroidal globules (figure 6).

The free energy of the globule F is taken as the sum of the bulk free energy Fint, the
conformational free energy Fconf, and the interaction free energy corresponding to the unit
orientation Forient:

F = Fint + Fconf + Forient. (18)

We assume that the globule is almost homogeneous in the bulk: φ = Nv/V , where V is
the globule volume. We neglect the possible microsegregation in the globule and we will use,
for the sake of simplicity, the virial expansion. Then, the interaction free energy has the usual
form for all the globular shapes (φ � 1):

Fint = kBT N

(
B

2
φ + C

6
φ2

)
. (19)

The minimum of expression (19) corresponds to the volume fraction φ0 = −3B/(2C).
The last two terms in the free energy (19) depend not only on the globule density but on the

globule shape as well. The surface interaction free energy Forient is determined by the benefit
from the orientation of monomer units at the surface. We assume that all monomer units at
a thin globule surface are strongly oriented towards the solvent due to the strong attraction
of polar groups to solvent molecules (|εPs| is of the order of unity or more). The interaction
energy of a polar group and solvent in the bulk εPs(1 − φ) is included in the free energy
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Fint (19). The interaction energy of a polar group and solvent at a surface is approximately
equal to εPs(1/2 + (1 − φ)/2). The difference yields the surface interaction free energy

Forient = kBT MsurfεPs(φ/2), (20)

where Msurf = φSsurf/v
2/3 is the number of monomer units at the surface of the one-unit size

thickness.
The chain conformation should adjust the effective walls formed by the layer of oriented

dimer units at the surface. We assume that, for example, the chain in a narrow slit of size
r has similar conformational constraints as the chain forming a narrow disc. We take the
conformational free energy to be proportional to Na2/r2, where the size r is still greater than
the monomer unit size a [34]. In a more general form, we introduce the characteristic sizes of
the region in three dimensions (r1, r2, r3) and take the conformational free energy in the form

Fconf = kBT Na2
(

1

r2
1

+ 1

r2
2

+ 1

r2
3

)
. (21)

For a spherical globule and beads r1 = r2 = r3 = r , where r is the radius of a globule
or one bead; r1 = r2 = R and r3 = r for disc and torus; r1 = R and r2 = r3 = r for
cylinder (figure 6). The conformational free energy (21) plays an essential role only if any size
ri (i = 1, 2, 3) is much less than the size of an unperturbed ideal chain in coil conformation√

Na.
Taking into account different geometries, we find the free energy F for each conformation

as a function of the volume fraction and linear dimensions. The macromolecule in a bead-
like conformation consists of one or several spherical globules connected by linear parts of the
chain. We assume that almost all units are included in beads, and the number of units in the
linear part of the chain is negligible. Besides, the bead size should be large enough so that
equation (21) is valid and the bead interactions may be neglected.

If m is the number of beads, then the total surface area and the total volume of the beads
are equal to Ssurf = m4πr2 and V = m4πr3/3. The surface area and the globule volume for
the torus Ssurf = 4π2r(R − r), V = 2π2r2(R − r); for the disc-like conformation Ssurf =
2π R2 + 2πr R, V = π R2r ; and for the conformation of a cylinder Ssurf = 2πr R + 2πr2,
V = πr2 R.

Let us first consider the limit of very long chains and write out the N-independent terms
from expressions (19)–(21) for the free energy per dimer unit F/N(N → ∞):

F

NkBT
= B

2
φ + C

6
φ2 + αconf

a2

r2
+ αorient

εPsφv1/3

r
. (22)

The size r in expression (22) corresponds to the minimum characteristic size of the globule.
Different shapes of globules correspond to different values of the factors αconf and αorient:
αconf = 1 for the disc and torus-like conformations; αconf = 2 for the conformation of a
cylinder; αconf = 3 for the bead-like conformation; αorient = 1 for the disc, cylinder, and
torus-like conformations; αorient = 3/2 for the bead-like conformation.

Minimizing the free energy F (22) with respect to the size r and to the volume fraction φ,
we obtain the minimum value of the free energy:

F0

NkBT
= − Cφ2

0

6(1 − α0β)
, (23)

where β = 3ε2
Ps/8Cg2 is the parameter characterizing the orientational ability of dimer units

and determined by the relation between εPs and the flexibility parameter g = a/v1/3. The
coefficient α0 is determined by globule shape: α0 = 4 for the disc and torus-like conformations;
α0 = 3 for the bead-like conformation, α0 = 2 for the conformations of a cylinder.
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The equilibrium values of the volume fraction and globule size are

φ = φ0

(1 − α0β)
, r = αconf

αorient

(1 − α0β)g2

|εPs|φ0
v1/3. (24)

As can be seen from expression (24), the equilibrium volume fraction of monomer units in
amphiphilic globules is larger than the volume fraction φ0, and it increases with increasing
|εPs|. The increase of the globule density is due to the tendency of dimer units to locate at the
surface, the fraction of monomer units at the surface is inversely proportional to the globule
size Msurf/N = Ssurfv

1/3/V ∼ 1/r (r is the radius of the sphere or cylinder, the width of
the disc etc), and therefore the smaller globule with the larger density is more favourable for
surface contacts of polar groups with solvent. At the same time, this tendency should lead to
inhomogeneous globule density: a denser shell and rarefied core. However, the consideration
of this effect demands rather more cumbersome calculations and we neglect it, assuming that
the character of shape transitions for amphiphilic globules remains unchanged.

The maximum value of α0 in the expression (23) corresponds to the minimum value of
the free energy F ; therefore, the most favourable conformations of the amphiphilic globule are
disc and torus-like ones. To distinguish between these shapes, we extend the expression for the
free energy (18)–(21) for the disc and torus-like conformations in powers over 1/N :

Fdt

NkBT
= F0

NkBT
+ 2γ

(
8πg5(1 − 4β)

Nε2
Psφ0

)2[
1 −

(
2g6(1 − 4β)2

Nε3
Psφ

2
0

)2]
, (25)

where γ = 1 for a disc-like and γ = π2 for a torus-like conformation. Since the correction
to F0 is larger for the torus-like conformation, then the disc-like globule should be observed
for large but finite values of the chain length N . The appearance of the torus-like structure
can be expected for not very large N , when the second correction to the free energy F0 in
expression (25) is essential: N < Ncr ≈ g6/(φ2

0 |ε3
Ps|). The bead-like structure can be formed

if the first correction to the free energy is comparable with F0: N < Ncr ≈ g5/(
√

Cφ2
0ε2

Ps).
To obtain the complete shape diagrams, we calculate the free energy F (18)–(21)

numerically, besides, the free energy for the bead-like conformation was analysed directly
for m = 1, 2, 3 beads. The most favourable conformations for the amphiphilic molecule are
presented at the shape diagrams depending on the parameters (εHH, εPs) for different chain
lengths and flexibilities (figure 7). The solvent quality is determined by the second virial
coefficient and depends on both interaction energies εHH and εPs: B = εHH/2 − 2εPs + v/vs.
The straight line in the figure is the boundary between the coil and globular state corresponding
to the zero second virial coefficient B = 0. With the change of the solvent quality the
macromolecule coil transforms to the system of beads and, then, into the disc conformation
for flexible chains or into the torus-like conformation for rigid chains. For the small values
of |εPs| the macromolecule forms only one bead (spherical globule), which turns to the disc or
torus. The chain flexibility and the value of the interaction energy εPs determine the equilibrium
number of beads: the dashed curve with the number i separates the bead-like conformations
with i and i + 1 beads. The number of beads at the transition to disc or torus conformation can
be predicted from figure 7 as well.

The structural transitions for flexible amphiphilic macromolecules were earlier
investigated in computer experiments [30]. The transitions with decreasing second virial
coefficient were the following: from a coil to a necklace-like conformation, then to sausage-
like, and then to a cylindrical form. In our consideration the decrease of the second virial
coefficient corresponds to the motion along the arrows in figure 7. Flexible macromolecules
also transform from coil into beads, and then beads diminish in size and merge, forming
a sausage-like conformation near the boundary between the necklace-like and disc-like
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Figure 7. The shape diagram for amphiphilic globules depending on the interaction energy of
polar groups and solvent εPs and on the H–H group interaction energy εHH. The chain length
N = 10 000, the flexibility parameter g = 1 (a), g = 5 (b), the second and third virial coefficients
B = εHH/2 − 2εPs + v/vs and C = v/vs = 2.

conformations. Therefore, the formation of sausage-like globules in computer simulations is in
agreement with our consideration.

In a very poor solvent the amphiphilic macromolecules should form a disc-like
conformation (the upper left corners at the diagrams 7(a), (b)). However, the disc-shaped
globules were not obtained in computer experiments [30]. As we can assume, the sausage-
like rather than disc-like globules were formed for kinetic reasons: a high threshold exists
between these two conformations in poor solvent. We predict that a disc-like conformation can
be obtained in a poor solvent for not very high values of the interaction energies εHH, εPs via
the deformation of a single globule rather than the transformation of a necklace-like structure.

Our consideration does not predict the formation of cylinder-shaped globules. This fact
relates to the assumption of the high conformational free energy (20) of a chain confined in a
narrow region in two dimensions for a cylinder. However, the present approach does not forbid
the formation of a cylinder or other conformations, since very approximate expressions are used
and the energetic benefit from the microsegregation in the globule is not taken into account.

The shape diagrams in the variables (εPs,g) are presented for loose globules (figure 8(a))
and for dense globules with φ = 1 (figure 8(b)). With the increase of the interaction energy
|εPs|, the role of the orientational free energy Forient increases ((18), (21)) and the larger surface
area is more favourable. At the same time, the conformational free energy Fconf ((18), (20))
has the minimum over globules of the same volume for the spherical shape. For small values of
|εPs| a single spherical globule is formed; the increase of the value |εPs| leads to the transition
to several beads. The bead radius remarkably depends on the chain flexibility and εPs, as can be
obtained from the expressions (24): r/v1/3 ≈ 4(1 − 3β)g2/(φ0|εPs|). The equilibrium number
of beads is approximately proportional to the length of the macromolecule.

When the size of the beads becomes quite small, the macromolecule becomes strongly
deformed, this fact giving rise to further conformational transitions. At some critical size of
beads the globule transforms into a disc or torus depending on the chain flexibility. The surface
area of the disc and torus at the transition curve is somewhat less than that for the beads, whereas
the deformation of the chain considerably decreases. For the more rigid macromolecules all
transitions take place for the larger globule sizes for both conformations.
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Figure 8. The shape diagram for amphiphilic globules depending on the interaction energy of polar
groups and solvent εPs and on the flexibility parameter g. The chain length N = 1000, the virial
coefficients B = −1/3, C = 2 (a), and the volume fraction φ = 1 (b).
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Figure 9. The shape diagram for amphiphilic globules depending on the interaction energy of polar
groups and solvent εPs and on the chain length N . The flexibility parameter g = 3 (a), g = 5 (b),
the virial coefficients B = −1/3, C = 2.

The shape diagram for dense globules (figure 8(b)) slightly differs from that for loose
globules mainly in the number of beads: the chain with dense structure does not form many
beads. The size of beads is considerably smaller for the chain with φ = 1, since the high
conformational free energy of chain segments in such beads prevents their splitting.

It is worthwhile to note that a torus-like structure was considered earlier for a persistent
homopolymer macromolecule in poor solvent, where the transitions from a coil to torus-like,
and then to spherical conformation were predicted with increasing effective interaction energy
of monomer units [12]. Such a sequence of conformational transitions differs from that in our
consideration, since we take into account the negative interaction energy of dimer units at the
surface oppositely to the positive surface energy of homopolymer globules.

To reveal the behaviour of an amphiphilic macromolecule with increasing chain length,
the shape diagrams in the variables (N, |εPs|) are presented in figure 9. The existence of the
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(a) (b)

Figure 10. The transformations of a flexible (a) and rigid (b) amphiphilic macromolecule with
increasing interaction energy of polar groups and solvent |εPs|.

Figure 11. The types of bead-like conformation.

torus-like conformation is expected for not very long chains with high stiffness (figure 9(b)).
For longer chains the transition from beads to disc-like conformation takes place for smaller
values of the interaction energy |εPs| in accordance with expression (25).

The sequence of shape transformations for flexible and rigid chains of the same length
is illustrated in figure 10. Note that the bead size at the transition from beads to torus-like
conformation (b) is larger than that for the transition from beads to disc-like conformation (a).

Besides, it is worth noting that for a bead-like structure the present approach does not
predict the type of bead connection by linear parts of the chain. A necklace-like linear structure
and any branched more compact structures of a macromolecule are possible as illustrated in
figure 11. Only the number of beads which can be considered as structural subunits of a globule
is predicted depending on the unit interaction energies, chain length, and flexibility.

5. Conclusions

In the present paper we investigated the globular state of amphiphilic macromolecules with
hydrophobic–polar units. Such units orient at the globule surface, decreasing their interaction
energy with solvent. We first considered large spherical globules formed by macromolecules
with low orientation ability of the units. The competition between the interaction and the
entropy contributions of oriented dimer units determines the distribution function of unit
orientation, which depends on the concentration gradient and on the unit orientation ability:
for the higher gradient the units are more strongly oriented towards the globule surface. The
concentration profile at the surface layer and the surface tension are obtained from minimization
of the free energy of the macromolecules. The orientation of monomer units diminishes
the surface tension and makes the volume fraction profile steeper and non-symmetrical in
comparison with homopolymer globules of the same density.
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The shift of the coil–globule transition temperature is proportional to the change of the
surface free energy. Thus, the decrease of the surface tension gives rise to more stable (with
respect to a coil–globule transition) amphiphilic globules in comparison with homopolymer
globules.

With further increase of orientational ability of monomer units the surface layer becomes
very narrow (with the size comparable with one monomer unit). Therefore, the density gradient
becomes very large and the method of the density functional cannot be used directly. In this
case we proposed to write the expression for the free energy of the whole globule including the
surface interaction and volume interaction contributions, and the conformational free energy.
Then, we considered several globule shapes in order to select the equilibrium one and to find the
equilibrium size of the globule depending on the solvent quality and chain length. We obtained
the shape diagrams and the sequence of structural transitions for amphiphilic globules. The
transitions with decreasing second virial coefficient are the following: from a coil to a bead-
like conformation, and then to a disc-like form for flexible chains or to torus-like shape for stiff
chains.

It is worth noting that the aggregation of the amphiphilic globules can be prevented by the
oriented dimer units at the surface and, then, single macromolecular structures can be stable.

Our shape diagrams mainly agree with the results of molecular dynamics simulations for
the same model of flexible amphiphilic macromolecules except for the possibility of formation
of a disc-like structure in very poor solvent [30]. In the computer experiments the sausage-like
and cylinder globules were obtained for the flexible chains at the conditions of poor solvent.
The formation of cylinder globules is not predicted in our model, possibly because of neglecting
the energy benefit from the microsegregation in the globules. Besides, we assume that the
cylinder conformation is easier to obtain than the disc-like globules for kinetic reasons, and
that further transformation to a disc can be hindered because of the high energy threshold.
At the same time, the existence of disc-shaped biomacromolecules and synthetic amphiphilic
polymers is well established [1, 2, 8].
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